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Stackelberg Routing
In (classic) selfish routing all players act selfishly. 
In Stackelberg routing there exist players willing to cooperate
for social welfare (a fraction of the total players).

Both Selfish and Cooperative players are present.

Leader determines the paths of the coordinated players.
Selfish players (followers) minimize their own cost.

Nash Equilibria are considered as the possible 
outcomes of the game.
A Stackelberg Strategy is an algorithm that allocates paths to
coordinated players so as to lead selfish players to a good Nash
Equilibrium.
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Slightly more formal
We will consider single commodity networks. 
An instance in such networks:
Assume that a fraction α of the 
players are cooperative.
A Stackelberg strategy assigns cooperative players to paths.

They induce a congestion 

A new game is “created”:
Where  

(G, ce, r)

s = {se}e∈E

(G, ce, r,α)

(G, c0e, (1− α)r)

c0e(x) = ce(x+ se)



In the “new” game
Selfish players choose paths (as usual), and Nash flows are 
considered as the possible outcomes of the game (as usual).
On Equilibrium, selfish players induce a congestion

The Price of Anarchy is                    

σ = {σe}e∈E

PoA =
C(σ + s)

OPT



The Central Questions
Given a Stackelberg routing instance, we can ask:

Among all Stackelberg strategies, can we characterize 
and/or compute the strategy inducing the Stackelberg 
equilibrium - i.e., the eq. of minimum total latency?
What is the worst-case ratio between the total latency of 
the Stackelberg eq. and that of the optimal assignment of 
users to paths? 



Finding best strategy: NP-hard 
Reduction from                        problem:
Given n positive integers                  is there an    

satisfying:

Given an instance of                         create an instance of stackelberg routing:
A network G with n+1 parallel links
Demand:
¼ of the players are followers 
Cost functions:

1
3 -
2
3 Partition

a1, . . . , an S ⊆ {1, . . . , n}X
i∈S

ai =
1

3

nX
i=1

ai

2
Pn

i=1 ai = 2A

ci(x) =
x
ai
+ 4, i ≤ n and cn+1(x) = x

A

1
3 -
2
3 Partition

”yes” instance ⇔ there exist a strategy with average cost= 35
4 A
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Compute an optimal configuration
Assign coordinated players to optimal paths of largest latency

s t
2x

Flow = 1

Flow =34
xOpt routes: 

3 to upper edge
2 to middle edge
1 to lower edge

6 units to be routed.

LLF controlling ½ players, 
e.g. 3 units, routes: 

3 to upper edge

Flow =2

s t
2x

Flow =34
x

Flow=2

Nash Flow
Flow=1

PoA = 1



LLF in parallel links
Let α be the fraction of the cooperative players.

Theorem 1: In parallel links LLF induces an 
assignment of cost no more than 1/α times the OPT:

Proof by induction: When LLF saturates a link we can restrict to the 
instance that has:

this link deleted and

fraction of players the “remainders” of the previous instance. 

Some problems:  
LLF may fail to saturate any link. No problem: Let m be the “heaviest” link. 
If L is the cost of selfish players and x* is the optimal assignment, it is

When a link gets saturated selfish users could use it. No problem: There is 
an induced equilibrium that doesn’t use it.

PoALLF ≤
1

α

OPT ≥ x∗cm(x∗m) ≥ αL = αC(s+ σ)



Networks with Unbounded PoA
Theorem: Let             and                . There is an instance

such that for any Stackelberg strategy inducing s, it is:

Proof: The network is the following

The demands are:                                              (total flow=1)

Cost functions: B=1, C=0 and A is   

M > 0 α ∈ (0, 1)
(G, ce, r,α)

C(s+ σ) ≥M ·OPT

r0 =
1−α
2 and ri =

1+α
2k , i ≥ 1



Let oe denote the optimal congestion

Lemma:

The proof follows from the variational inequality, similar to the 
“classic” result.

LLF in parallel links

i) C(s+ σ) =
P
(se + σe)ce(se + σe) ≤ ρ ·OPT

ii)
P

σece(se + σe) ≤ ρ ·P(oe − se)ce(oe)



Let oe denote the optimal congestion

Lemma:

The proof follows from the variational inequality, similar to the 
“classic” result.

Theorem 2:

Proof:                                                 and      .

It is

This is maximized for                 with maximum value

i) C(s+ σ) =
P
(se + σe)ce(se + σe) ≤ ρ ·OPT

ii)
P

σece(se + σe) ≤ ρ ·P(oe − se)ce(oe)

PoALLF ≤ α+ (1− α) · ρ

OPT =

Az

LLF in parallel links

}| {X
sece(oe)+

Bz }| {X
(oe − se)ce(oe) A

B ≥ α
1−α

C(s+ σ) =
P
sece(se + σe) +

P
σece(se + σe) ≤ A+ ρ ·B

A
B =

α
1−α α+ (1− α) · ρ
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